skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Snyder Caitlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2026
  2. The incorporation of technology into primary and secondary education has facilitated the creation of curricula that utilize computational tools for problem-solving. In Open-Ended Learning Environments (OELEs), students participate in learning-by- modeling activities that enhance their understanding of (Science, technology, engineering, and mathematics) STEM and computational concepts. This research presents an innovative multimodal emotion recognition approach that analyzes facial expressions and speech data to identify pertinent learning-centered emotions, such as engagement, delight, confusion, frustration, and boredom. Utilizing sophisticated machine learning algorithms, including High-Speed Face Emotion Recognition (HSEmotion) model for visual data and wav2vec 2.0 for auditory data, our method is refined with a modality verification step and a fusion layer for accurate emotion classification. The multimodal technique significantly increases emotion detection accuracy, with an overall accuracy of 87%, and an Fl -score of 84%. The study also correlates these emotions with model building strategies in collaborative settings, with statistical analyses indicating distinct emotional patterns associated with effective and ineffective strategy use for tasks model construction and debugging tasks. These findings underscore the role of adaptive learning environments in fostering students' emotional and cognitive development. 
    more » « less
    Free, publicly-accessible full text available November 25, 2025
  3. Clarke-Midura, J; Kollar, I; Gu, X; D’Angelo, C (Ed.)
    In collaborative problem-solving (CPS), students work together to solve problems using their collective knowledge and social interactions to understand the problem and progress towards a solution. This study focuses on how students engage in CPS while working in pairs in a STEM+C (Science, Technology, Engineering, Mathematics, and Computing) environment that involves open-ended computational modeling tasks. Specifically, we study how groups with different prior knowledge in physics and computing concepts differ in their information pooling and consensus-building behaviors. In addition, we examine how these differences impact the development of their shared understanding and learning. Our study consisted of a high school kinematics curriculum with 1D and 2D modeling tasks. Using an exploratory approach, we performed in-depth case studies to analyze the behaviors of groups with different prior knowledge distributions across these tasks. We identify effective information pooling and consensus-building behaviors in addition to difficulties students faced when developing a shared understanding of physics and computing concepts. 
    more » « less
  4. LLMs have demonstrated proficiency in contextualizing their outputs using human input, often matching or beating human-level performance on a variety of tasks. However, LLMs have not yet been used to characterize synergistic learning in students’ collaborative discourse. In this exploratory work, we take a first step towards adopting a human-in-the-loop prompt engineering approach with GPT-4-Turbo to summarize and categorize students’ synergistic learning during collaborative discourse. Our preliminary findings suggest GPT-4-Turbo may be able to characterize students’ synergistic learning in a manner comparable to humans and that our approach warrants further investigation. 
    more » « less
  5. Grieff, S. (Ed.)
    Recently there has been increased development of curriculum and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) learning environments. These environments serve as a catalyst for authentic collaborative problem-solving (CPS) and help students synergistically learn STEM+C content. In this work, we analyzed students’ collaborative problem-solving behaviors as they worked in pairs to construct computational models in kinematics. We leveraged social measures, such as equity and turn-taking, along with a domain-specific measure that quantifies the synergistic interleaving of science and computing concepts in the students’ dialogue to gain a deeper understanding of the relationship between students’ collaborative behaviors and their ability to complete a STEM+C computational modeling task. Our results extend past findings identifying the importance of synergistic dialogue and suggest that while equitable discourse is important for overall task success, fluctuations in equity and turn-taking at the segment level may not have an impact on segment-level task performance. To better understand students’ segment-level behaviors, we identified and characterized groups’ planning, enacting, and reflection behaviors along with monitoring processes they employed to check their progress as they constructed their models. Leveraging Markov Chain (MC) analysis, we identified differences in high- and low-performing groups’ transitions between these phases of students’ activities. We then compared the synergistic, turn-taking, and equity measures for these groups for each one of the MC model states to gain a deeper understanding of how these collaboration behaviors relate to their computational modeling performance. We believe that characterizing differences in collaborative problem-solving behaviors allows us to gain a better understanding of the difficulties students face as they work on their computational modeling tasks. 
    more » « less
  6. null (Ed.)
    As technology advances, data-driven work is becoming increasingly important across all disciplines. Data science is an emerging field that encompasses a large array of topics including data collection, data preprocessing, data visualization, and data analysis using statistical and machine learning methods. As undergraduates enter the workforce in the future, they will need to “benefit from a fundamental awareness of and competence in data science”[9]. This project has formed a research-practice partnership that brings together STEM+C instructors and researchers from three universities and education research and consulting groups. We aim to use high-frequency monitoring data collected from real-world systems to develop and implement an interdisciplinary approach to enable undergraduate students to develop an understanding of data science concepts through individual STEM disciplines that include engineering, computer science, environmental science, and biology. In this paper, we perform an initial exploratory analysis on how data science topics are introduced into the different courses, with the ultimate goal of understanding how instructional modules and accompanying assessments can be developed for multidisciplinary use. We analyze information collected from instructor interviews and surveys, student surveys, and assessments from five undergraduate courses (243 students) at the three universities to understand aspects of data science curricula that are common across disciplines. Using a qualitative approach, we find commonalities in data science instruction and assessment components across the disciplines. This includes topical content, data sources, pedagogical approaches, and assessment design. Preliminary analyses of instructor interviews also suggest factors that affect the content taught and the assessment material across the five courses. These factors include class size, students’ year of study, students’ reasons for taking class, and students’ background expertise and knowledge. These findings indicate the challenges in developing data modules for multidisciplinary use. We hope that the analysis and reflections on our initial offerings have improved our understanding of these challenges, and how we may address them when designing future data science teaching modules. These are the first steps in a design-based approach to developing data science modules that may be offered across multiple courses. 
    more » « less
  7. null (Ed.)
    As technology advances, data-driven work is becoming increasingly important across all disciplines. Data science is an emerging field that encompasses a large array of topics including data collection, data preprocessing, data visualization, and data analysis using statistical and machine learning methods. As undergraduates enter the workforce in the future, they will need to “benefit from a fundamental awareness of and competence in data science”[9]. This project has formed a research-practice partnership that brings together STEM+C instructors and researchers from three universities and an education research and consulting group. We aim to use high-frequency monitoring data collected from real-world systems to develop and implement an interdisciplinary approach to enable undergraduate students to develop an understanding of data science concepts through individual STEM disciplines that include engineering, computer science, environmental science, and biology. In this paper, we perform an initial exploratory analysis on how data science topics are introduced into the different courses, with the ultimate goal of understanding how instructional modules and accompanying assessments can be developed for multidisciplinary use. We analyze information collected from instructor interviews and surveys, student surveys, and assessments from five undergraduate courses (243 students) at the three universities to understand aspects of data science curricula that are common across disciplines. Using a qualitative approach, we find commonalities in data science instruction and assessment components across the disciplines. This includes topical content, data sources, pedagogical approaches, and assessment design. Preliminary analyses of instructor interviews also suggest factors that affect the content taught and the assessment material across the five courses. These factors include class size, students’ year of study, students’ reasons for taking class, and students’ background expertise and knowledge. These findings indicate the challenges in developing data modules for multidisciplinary use. We hope that the analysis and reflections on our initial offerings have improved our understanding of these challenges, and how we may address them when designing future data science teaching modules. These are the first steps in a design-based approach to developing data science modules that may be offered across multiple courses. 
    more » « less